MLMachine¶
- class zvt.ml.ml.MLMachine(entity_ids: List[str] = None, start_timestamp: str | Timestamp = '2015-01-01', end_timestamp: str | Timestamp = '2021-12-01', predict_start_timestamp: str | Timestamp = '2021-06-01', predict_steps: int = 20, level: IntervalLevel | str = IntervalLevel.LEVEL_1DAY, adjust_type: AdjustType | str = None, data_provider: str = None, label_method: str = 'raw')¶
Bases:
object
- __init__(entity_ids: List[str] = None, start_timestamp: str | Timestamp = '2015-01-01', end_timestamp: str | Timestamp = '2021-12-01', predict_start_timestamp: str | Timestamp = '2021-06-01', predict_steps: int = 20, level: IntervalLevel | str = IntervalLevel.LEVEL_1DAY, adjust_type: AdjustType | str = None, data_provider: str = None, label_method: str = 'raw') None ¶
- Parameters:
entity_ids
start_timestamp
end_timestamp
predict_start_timestamp
predict_steps
level
adjust_type
data_provider
label_method – raw, change, or behavior_cls
- build_feature(entity_ids: List[str], start_timestamp: Timestamp, end_timestamp: Timestamp) DataFrame ¶
- result df format
col1 col2 col3 …
- entity_id timestamp
1.2 0.5 0.3 … 1.0 0.7 0.2 …
- Parameters:
entity_ids – entity id list
start_timestamp
end_timestamp
- Return type:
pd.DataFrame