MLMachine

class zvt.ml.ml.MLMachine(entity_ids: List[str] = None, start_timestamp: str | Timestamp = '2015-01-01', end_timestamp: str | Timestamp = '2021-12-01', predict_start_timestamp: str | Timestamp = '2021-06-01', predict_steps: int = 20, level: IntervalLevel | str = IntervalLevel.LEVEL_1DAY, adjust_type: AdjustType | str = None, data_provider: str = None, label_method: str = 'raw')

Bases: object

__init__(entity_ids: List[str] = None, start_timestamp: str | Timestamp = '2015-01-01', end_timestamp: str | Timestamp = '2021-12-01', predict_start_timestamp: str | Timestamp = '2021-06-01', predict_steps: int = 20, level: IntervalLevel | str = IntervalLevel.LEVEL_1DAY, adjust_type: AdjustType | str = None, data_provider: str = None, label_method: str = 'raw') None
Parameters:
  • entity_ids

  • start_timestamp

  • end_timestamp

  • predict_start_timestamp

  • predict_steps

  • level

  • adjust_type

  • data_provider

  • label_method – raw, change, or behavior_cls

build_feature(entity_ids: List[str], start_timestamp: Timestamp, end_timestamp: Timestamp) DataFrame
result df format

col1 col2 col3 …

entity_id timestamp

1.2 0.5 0.3 … 1.0 0.7 0.2 …

Parameters:
  • entity_ids – entity id list

  • start_timestamp

  • end_timestamp

Return type:

pd.DataFrame